Abstract

PurposeThis study aims to address the problem of the divergence of traditional inertial navigation system (INS)/celestial navigation system (CNS)-integrated navigation for ballistic missiles. The authors introduce Doppler navigation system (DNS) and X-ray pulsar navigation (XNAV) to the traditional INS/CNS-integrated navigation system and then propose an INS/CNS/DNS/XNAV deep integrated navigation system.Design/methodology/approachDNS and XNAV can provide velocity and position information, respectively. In addition to providing velocity information directly, DNS suppresses the impact of the Doppler effect on pulsar time of arrival (TOA). A pulsar TOA with drift bias is observed during the short navigation process. To solve this problem, the pulsar TOA drift bias model is established. And the parameters of the navigation filter are optimised based on this model.FindingsThe experimental results show that the INS/CNS/DNS/XNAV deep integrated navigation can suppress the drift of the accelerometer to a certain extent to improve the precision of position and velocity determination. In addition, this integrated navigation method can reduce the required accuracy of inertial navigation, thereby reducing the cost of missile manufacturing and realising low-cost and high-precision navigation.Originality/valueThe velocity information provided by the DNS can suppress the pulsar TOA drift, thereby improving the positioning accuracy of the XNAV. This reflects the “deep” integration of these two navigation methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.