Abstract

Despite various proposed measurement techniques for assessing syndesmosis integrity, a standardized protocol is lacking, and the existing literature reports inconsistent findings regarding normal and abnormal relationships between the fibula and tibia at the distal level. Therefore, this study aims to present an overview of two- (2D) and three-dimensional (3D) measurement methods utilized to evaluate syndesmosis integrity. A topical literature review was conducted, including studies employing 2D or 3D measurement techniques to quantify distal tibiofibular syndesmosis alignment on computed tomography (CT) or weight-bearing CT (WBCT) scans. A total of 49 eligible articles were included in this review. While most interclass correlation (ICC) values indicate favorable reliability, certain measurements involving multiple steps exhibited lower ICC values, potentially due to the learning curve associated with their implementation. Inconclusive results were obtained regarding the influence of age, sex, and height on syndesmotic measurements. No significant difference was observed between bilateral ankles, permitting the use of the opposite side as an internal control for comparison. There is a notable range of normal and pathological values, as evidenced by the standard deviation associated with each measurement. This review highlights the absence of a consensus on syndesmotic measurements for assessing integrity despite numerous CT scan studies. The diverse measurement techniques, complexity, and inconclusive findings present challenges in distinguishing between normal and pathological values in routine clinical practice. Promising advancements in novel 3D techniques offer potential for automated measurements and reduction of observer inaccuracies, but further validation is needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.