Abstract

In this paper a robust model predictive control (MPC) for constrained discrete-time nonlinear system with additive uncertainties is presented. This controller uses a terminal cost, terminal constraint and nominal predictions. The terminal region and constraints on the states are computed to get robust feasibility of the closed loop system for a given bound on the admissible uncertainties. Furthermore, it is proved that the closed-loop system is input-to-state stable with relation to the uncertainties. Therefore, the closed-loop system evolves towards a compact set where it is ultimately bounded. In case of decaying uncertainties, the closed-loop system is asymptotically stable. The convergence of the closed loop system is guaranteed despite the suboptimality of the solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call