Abstract
We consider the problem of achieving input-to-state stability (ISS) with respect to external disturbances for control systems with linear dynamics and quantized state measurements. Quantizers considered in this paper take finitely many values and have an adjustable zoom parameter. Building on an approach applied previously to systems with no disturbances, we develop a control methodology that counteracts an unknown disturbance by switching repeatedly between zooming out and zooming in. Two specific control strategies that yield ISS are presented. The first one is implemented in continuous time and analyzed with the help of a Lyapunov function, similarly to earlier work. The second strategy incorporates time sampling, and its analysis is novel in that it is completely trajectory-based and utilizes a cascade structure of the closed-loop hybrid system. We discover that in the presence of disturbances, time-sampling implementation requires an additional modification which has not been considered in previous work
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.