Abstract

SUMMARYThis paper considers a class of Lur'e descriptor systems (LDS) subject to exogenous disturbances. The concept of input‐to‐state stability (ISS) is generalized to descriptor systems. Such a notion characterizes the robust stability of the full state of the systems. Based on the conventional ISS theory, a sufficient condition expressed by linear matrix inequalities (LMIs) for the LDS to be ISS is derived. It is further shown that this condition also guarantees a special class of LDS to be of index one. Then, a state feedback controller is designed to make the closed‐loop system ISS. Finally, an example is given to illustrate the obtained results. Copyright © 2012 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.