Abstract

This paper presents the trajectory-based input-to-state stability (ISS) and input-to-output stability (IOS) small-gain theorem, and the finite-time ISS (FTISS) and finite-time IOS (FTIOS) of nonlinear singularly perturbed systems. The contribution of this paper is threefold. Firstly, a novel idea is proposed to analyze the stability of the nonlinear singularly perturbed system, which is regarded as an interconnected system by using two-time-scale decomposition. Secondly, the trajectory-based approach is applied to establish ISS and IOS small-gain theorem for singularly perturbed systems and the FTISS and FTIOS properties are proposed. Thirdly, a novel sliding mode controller is developed for a class of nonlinear singularly perturbed systems. Finally, the effectiveness of proposed method is illustrated by using a numerical example, a DC motor simulation and a multi-agent singularly perturbed system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call