Abstract

Model programs are used as high-level behavioral specifications typically representing abstract state machines. For modeling reactive systems, one uses input-output model programs, where the action vocabulary is divided between two conceptual players: the input player and the output player. The players share the action vocabulary and make moves that are labeled by actions according to their respective model programs. Conformance between the two model programs means that the output (input) player only makes output (input) moves that are allowed by the input (output) players model program. In a bounded game, the total number of moves is fixed. Here model programs use a background theory \(\mathcal{T}\) containing linear arithmetic, sets, and tuples. We formulate the bounded game conformance checking problem, or BGC, as a theorem proving problem modulo \(\mathcal{T}\) and analyze its complexity.KeywordsModel ProgramModel CheckLabel Transition SystemBackground TheoryAction SymbolThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.