Abstract

This paper proposes the theoretical framework and the consequent application of the input–output feedback linearization (FL) control technique to linear induction motors (LIMs). LIM, additionally to rotating induction motor, presents other strong nonlinearities caused by the dynamic end effects, leading to a space-vector dynamic model with time-varying inductance and resistance terms and a braking force term. This paper, starting from a recently developed dynamic model of the LIM taking into consideration its end effects, defines a FL technique suited for LIMs, since it inherently considers its dynamic end effects. Additionally, it proposes a technique for the on-line estimation of the inductor resistance, based on model reference adaptive system (MRAS) on-line estimator; it has been exploited for adapting on-line the FL control action versus inductor resistance variations leading to undesirable steady-state tracking errors. The stability of the proposed MRAS on-line estimator has been proven theoretically, adopting the Popov's criterion for hyperstability. The proposed approach has been validated experimentally on a suitably developed test setup, under both no load and loaded conditions. It has been compared firstly with the simplest control structure, which is the scalar $V/f$ control, secondly under the same closed-loop bandwidths of the flux and speed systems, with the industrial standard in terms of high-performance control technique, i.e., field-oriented control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.