Abstract

We study microwave radiation emitted by a small voltage-biased Josephson junction connected to a superconducting transmission line. An input–output formalism for the radiation field is established, using a perturbation expansion in the junction's critical current. Using output field operators solved up to the second order, we estimate the spectral density and the second-order coherence of the emitted field. For typical transmission line impedances and at frequencies below the main emission peak at the Josephson frequency, radiation occurs predominantly due to two-photon emission. This emission is characterized by a high degree of photon bunching if detected symmetrically around half of the Josephson frequency. Strong phase fluctuations in the transmission line make related nonclassical phase-dependent amplitude correlations short lived, and there is no steady-state two-mode squeezing. However, the radiation is shown to violate the classical Cauchy–Schwarz inequality of intensity cross-correlations, demonstrating the nonclassicality of the photon pair production in this region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.