Abstract
This paper focuses on the sliding mode control (SMC) problem of interval type-2 (IT2) fuzzy systems subject to the unmeasurable state and cyberattacks. A key issue is how to design a state observer under the constraint that only the bounds of membership functions are known. To this end, this paper introduces two weighting factors to construct a new membership function. Besides, the concept of input-to-state stability (ISS) is utilized to deal with the residual term resulting from the cyberattacks and external disturbances. The sufficient condition is established such that the sliding mode dynamics and the estimated error dynamics are input-to-state stable. Furthermore, by online estimating the unknown parameters in upper bounds of cyberattacks and external disturbances, an adaptive sliding mode controller is synthesized such that the reachability of the prescribed sliding surface can be guaranteed and the effect of cyberattacks on the system performance can be effectively attenuated. Finally, the validity of the proposed method is illustrated by a mass–spring–damper system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.