Abstract

In this study, the authors consider the input-to-state stability of an ordinary differential equation (ODE)-heat cascade system with Dirichlet interconnection where the boundary control input is located at the right end of the heat equation and the disturbance is appeared as a non-homogeneous term in the ODE. Based on two backstepping transformations, they design a state feedback control law that guarantees the input-to-state stability of the closed-loop system. The well-posedness of the closed-loop system is presented by using the semi-group approach. Moreover, they design an output feedback control law by constructing an exponentially convergent observer. With the output feedback control, the input-to-state stability of the resulting closed-loop system is proven.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.