Abstract

This note establishes the Exponential Input-to-State Stability (EISS) property for a clamped-free damped string with respect to distributed and boundary disturbances. While efficient methods for establishing ISS properties for distributed parameter systems with respect to distributed disturbances have been developed during the last decades, establishing ISS properties with respect to boundary disturbances remains challenging. One of the well-known methods for well-posedness analysis of systems with boundary inputs is the use of a lifting operator for transferring the boundary disturbance to a distributed one. However, the resulting distributed disturbance involves time derivatives of the boundary perturbation. Thus, the subsequent ISS estimate depends on its amplitude, and may not be expressed in the strict form of ISS properties. To solve this problem, we show for a clamped-free damped string equation that the projection of the original system trajectories in an adequate Riesz basis can be used to establish the desired EISS property.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.