Abstract

Intrusion detection system (IDS) is one of the most important components being used to monitor network for possible cyber-attacks. However, the amount of data that should be inspected imposes a great challenge to IDSs. With recent emerge of various big data technologies, there are ways for overcoming the problem of the increased amount of data. Nevertheless, some of this technologies inherit data distribution techniques that can be a problem when splitting a sensitive data such as network data frames across a cluster nodes. The goal of this paper is design and implementation of Hadoop based IDS. In this paper we propose different input split techniques suitable for network data distribution across cloud nodes and test the performances of their Apache Hadoop implementation. Four different data split techniques will be proposed and analysed. The techniques will be described in detail. The system will be evaluated on Apache Hadoop cluster with 17 slave nodes. We will show that processing speed can differ for more than 30% depending on chosen input split design strategy. Additionally, we?ll show that malicious level of network traffic can slow down the processing time, in our case, for nearly 20%. The scalability of the system will al so be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.