Abstract

This paper presents the first input-output robust control design for the trajectory following problem of a flexible-joint robot manipulator. The proposed design provides a class of controllers which only require position and velocity feedback and ensure global stability. The resulting stability is that the tracking error can be made to be smaller than a design parameter arbitrarily chosen by the designer. The proposed control is robust since it guarantees tracking performance in the presence of high-order nonlinear uncertainties including unknown joint elasticity, unknown parameters, load variation, and disturbances. Practically, it is more important that no measurement on acceleration, jerk, or position and velocity deformation is required.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.