Abstract
In this paper, we consider the problem of model equivalence for quantum systems. Two models are said to be (input-output) equivalent if they give the same output for every admissible input. In the case of quantum systems, we take as output the expectation value of a given observable or, more generally, a probability distribution for the result of a quantum measurement. We link the input-output equivalence of two models to the existence of a homomorphism of the underlying Lie algebra. In several cases, a Cartan decomposition of the Lie algebra $su(N)$ is useful to find such a homomorphism and to determine the classes of equivalent models. We consider in detail the important cases of two level systems with a Cartan structure and of spin networks. In the latter case, complete results are given generalizing previous results to networks of spin particles with arbitrary values of the spins. In treating this problem, we give independent proofs of some instrumental results on the subalgebras of $su(N)$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.