Abstract
Abstract An input-output linearization strategy for constrained nonlinear processes is proposed. The system may have constraints on both the manipulated input and the controlled output. The nonlinear control system is comprised of: (i) an input-output linearizing controller that compensates for processes nonlinearities; (ii) a constraint mapping algorithm that transforms the original input constraints into constraints on the manipulated input of the feedback linearized system; (iii) a linear model predictive controller that regulates the resulting constrained linear system; and (iv) a disturbance model that ensures offset-free setpoint tracking. As a result of these features, the approach combines the computational simplicity of input output linearization and the constraint handling capability of model predictive control. Simulation results for a continuous stirred tank reactor demonstrate the superior performance of the proposed strategy as compared to conventional input-output linearizing control and model predictive control techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.