Abstract

Abstract This paper presents the control of an under-constrained 4 Cable-Driven Parallel Robot (CDPR) using input-output feedback linearization technique. The dynamic model of the CDPR is first formulated by taking into account the Euler angle rates. Following this, the input-output feedback linearization method is implemented to decouple the output and input. A linear feedback controller is then designed using pole placement method to control the CDPR. The control law is then verified by simulation using MATLAB software. Simple trajectories are then tested with and without the presence of noise to analyze the behavior of the control law.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call