Abstract
The input-output block decoupling problem by state feedback is studied for linear time-varying singular systems. First, an algorithm, the regularization algorithm, is developed such that the system can be made by state feedback to have a unique impulse-free solution. Second, another algorithm, the block decoupling algorithm, is proposed, which provides sufficient conditions for the solvability of the input-output block decoupling problem. Then, a decoupling feedback law is constructed such that the corresponding closed-loop system is regular, impulse-free, and noninteractive. Finally, an example is given to illustrate the applicability of the algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.