Abstract

The offshore wind sector is skyrocketing worldwide, with a clear trend towards wind farms installed in increasingly deep waters and harsh marine environments. This is posing significant engineering challenges, including those regarding the design of support structures and foundations for offshore wind turbines (OWTs). Substantial research efforts are being devoted to the geotehnical design of monopile foundations, currently supporting about 80% of OWTs in Europe. This paper overviews recent work carried out at TU Delft on the numerical integrated modelling of soil-monopile-OWT systems, and its input to the improvement of geotechnical design approaches. The benefits of incorporating advanced soil constitutive modelling in three-dimensional finite element simulations are highlighted, with emphasis on the interplay of cyclic soil behaviour and dynamic OWT performance. Ongoing research on high-cyclic soil plasticity modelling is also presented, and related to the analysis of monopile tilt under irregular environmental loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.