Abstract

Multimodal data occurs frequently in discrete-event simulation input analysis, typically arising when an input sample stream comes from different sources. A finite mixture distribution is a simple input model for representing such data, but fitting a mixture distribution is not straightforward as the problem is well-known to be statistically non-standard. Even though much studied, the most common fitting approach, Bayesian reversible jump Markov Chain Monte Carlo (RJMCMC), is not very satisfactory for use in setting up input models. We describe an alternative Bayesian approach, MAPIS, which uses maximum a posteriori estimation with importance sampling, showing it overcomes the main problems encountered with RJMCMC. We demonstrate use of a publicly available implementation of MAPIS, which we have called FineMix, applying it to practical examples coming from finance and manufacturing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.