Abstract

A framework for reformulating input design problems in prediction error identification as convex optimization problems is presented. For linear time-invariant single input/single output systems, this framework unifies and extends existing results on open-loop input design that are based on the finite dimensional asymptotic covariance matrix of the parameter estimates. Basic methods for parametrizing the input spectrum are provided and conditions on these parametrizations that guarantee that all possible covariance matrices for the asymptotic distribution of the parameter estimates can be generated are provided. A wide range of model quality constraints can be handled. In particular, different frequency-by-frequency constraints can be used. This opens up new applications of input design in areas such as robust control. Furthermore, quality specifications can be imposed on all models in a confidence region. Thus, allowing for statements such as with at least 99% probability the model quality specifications will be satisfied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.