Abstract

This paper presents a boost converter with a proposed tapped inductor ripple cancellation network. Based on the conventional boost converter (CBC), a small capacitor and a small inductor are added as the ripple cancellation network (RCN) in the proposed converter. Meanwhile, the tapped inductor can be easily realized by adding an extra tap in the main inductor of the CBC. Since the capacitor and inductor in the RCN do not need to handle the main power as the conventional LC input filter, the size and weight of the proposed converter are relatively small comparing the CBC with the LC input filter. The small signal and dynamic characteristics analyses show that the proposed converter has the same static and dynamic responses as the CBC, and the input current ripple cancellation can be achieved in all power ranges without significantly increasing the losses. Finally, three 36-50-V, 500-W prototypes operating at 100 kHz are implemented to verify the expected performance. The simulation and experimental results show that the proposed converters can achieve input current ripple cancellation with efficiency higher than 97.4% in all power ranges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call