Abstract
As the demand toward a thin liquid crystal display accelerates, a backlight system must become thinner. Compact and efficient coupling of an LED to a thin light-guide is one of the key technologies. First, we consider simple face-down and prism coupling, and carry out experiments using a chip-type LED with a 2.4-mm-diam emission area and a 3.0-mm-thick light-guide. Face-down coupling guides only 12% of the LED output into the light-guide. With a right-angle prism, the efficiency is improved to 23%. We try to improve the coupling efficiency by altering the propagation direction of the light with an optical film. However, our experiments and simulations with off-the-shelf prism sheets and diffuser films show that the coupling efficiency decreases. Next, we carry out ray-tracing simulations for various input coupler designs. A chip-type LED with a 0.42-mm-diam emission area and a 0.1-mm-thick light-guide are assumed. Calculated efficiency greater than 50% is obtained by a square prism mounted obliquely on the light-guide, while the footprint of the coupler is about 1.3 mm. An input coupler based on an oblique cylinder improves the calculated efficiency to 73.5% at the expense of its footprint of 4.82 mm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.