Abstract
Data-driven techniques are finding their way into the calibration procedure of galvanometric setups. However, they bypass the underlying physical or mathematical model completely. Recent work has shown that a simple assumption about an underlying truth can improve the predictions: laser beams leaving the device follow a straight line. In this article, we take that approach a step further. Both the inputs (the pairs of rotations of the two mirrors) and outputs (the straight lines) lie on a manifold. We can incorporate this prior knowledge in the model via constraints built in the formulation of a covariance function. We propose two constrained models: one in which a linear constraint on the direction vector is written as a differential equation, and one in which a quadratic constraint is imposed by a reparametrization of the line coordinates. We compare them with the data-driven and unconstrained model-based approaches. We show that enforcing constraints improves the quality of the predictions significantly and, thus, the accuracy of the calibration. We validate our findings against real world data by predicting points on validation planes, calculating line segment distances, considering the training times for the models, and assessing how much a predicted line resembles an actual straight line.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.