Abstract

An efficient numerical technique based on the modal-expansion method in conjunction with a recursive algorithm is developed for a multilayer insulated monopole antenna fed by a coaxial transmission line. The modal-expansion analysis is facilitated by introducing a perfectly matched boundary (PMB) at a variable height over the ground plane of the monopole. The current distribution and input admittance are computed by finding the expansion coefficients of the electromagnetic field expressions. Numerical results for the input admittance of a dielectric-coated monopole antenna and an air-insulated monopole are compared with experimental ones available in the literature. Good agreement is achieved. Calculated results for the effects of various parameters on the input admittance of an air-insulated monopole antenna are presented and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call