Abstract

Recently researchers and manufacturers have shown keen interest in fabricating micro-components through tool based mechanical micromachining processes namely micromilling, microdrilling, microturning, etc. In this scenario, microendmilling is used in the manufacture of micro-molds, micro-dies, micro-channel, micro-gear, etc. The major issue in microendmilling process is the unpredictable life of the micro-tool and its premature failure during operations. Therefore in this work, an attempt has been made to monitor the tool condition (in-process) using acoustic emission (AE) sensor in microendmilling of different materials such as aluminum, copper and steel alloys. From this study, it is observed that there is a strong relationship between the tool wear (flank wear) and acoustic emission (AERMS) signals, surface roughness (Ra) as well as chip morphology. In order to understand the mechanism of tool wear, SEM and EDAX analyses were carried out on the microendmill after machining. Scanning Electron Microscope (SEM) and energy dispersive X-ray spectroscopy (EDAX) analyses indicated occurrence of the tool wear mechanism such as adhesion and plastic deformation in all three materials. Coating delamination is also observed while machining steel alloy. This work provides significant and new knowledge on the usage of AE sensor in monitoring the tool condition and understanding the tool wear mechanism in microendmilling of different materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call