Abstract
We have studied the dynamics of bis-thiourea pyridinium chloride and bromide by means of quasielastic neutron scattering (QENS). The QENS data allow describing the geometry of the in-plane motion of the pyridinium cation and reveal that it is similar to the motion previously observed in bis-thiourea pyridinium iodide. Molecular dynamics (MD) simulations have been performed to investigate the cation dynamics on the high temperature phase of the full series of compounds: bis-thiourea pyridinium chloride, bromide and iodide. Three different models of intermolecular potential have been tested and the agreement between the simulated and experimental elastic incoherent structure factors (EISFs) is used to select the more realistic one. The detailed analysis of the MD results indicates that Coulombic interactions together with the formation of hydrogen bonds between the pyridinium cation and the host sublattice influence strongly the geometry of the in-plane cation reorientation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.