Abstract
In vacuum infusion processes fiber preforms are placed onto the single molding surface and enveloped with a non-rigid polymer bag which is sealed to the molding surface. The flexible bagging film does deform during the resin infusion process thus changing the compaction of the fabric. However, one can also relax the preform by drawing a partial vacuum in a rigid chamber placed on top of the flexible bag which will increase the permeability of the fabric under the chamber. A numerical model is presented to characterize the change in permeability and describe the mold filling for such processes in which the fabrics undergo controlled relaxation by external stimuli. The predictions from the simplified model agreed reasonably well with the experiments. This characterization and resin flow front prediction with time method should prove useful in processes such as Vacuum Induced Preform Relaxation (VIPR) process which can be used to actively manipulate flow in a vacuum infusion process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.