Abstract

Dual single-atom catalysts (DSACs) are promising for breaking the scaling relationships and ensuring synergistic effects compared with conventional single-atom catalysts (SACs). Nevertheless, precise synthesis and optimization of DSACs with specific locations and functions remain challenging. Herein, dual single-atoms are specifically incorporated into the layer-stacked bulk-like carbon nitride, featuring in-plane three-coordinated Pd and interplanar four-coordinated Cu (Pd1-Cu1/b-CN) atomic sites, from both experimental results and DFT simulations. Using femtosecond time-resolved transient absorption (fs-TA) spectroscopy, it is found that the in-plane Pd features a charge decay lifetime of 95.6ps which is much longer than that of the interplanar Cu (3.07ps). This finding indicates that the in-plane Pd can provide electrons for the reaction as the catalytically active site in both structurally and dynamically favorable manners. Such a well-defined bi-functional cascade system ensures a 3.47-fold increase in CO yield compared to that of bulk-like CN (b-CN), while also exceeding the effects of single Pd1/b-CN and Cu1/b-CN sites. Furthermore, DFT calculations reveal that the inherent transformation from s-p coupling to d-p hybridization between the Pd site and CO2 molecule occurs during the initial CO2 adsorption and hydrogenation processes and stimulates the preferred CO2-to-CO reaction pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.