Abstract

In order to fully comprehend dynamic responses of metallic auxetic honeycombs, drop hammer impact tests and corresponding finite element (FE) analyses were conducted. The three-dimensional (3D) printing technology was adopted to manufacture stainless steel specimens with varying cell side length-to-thickness ratios and cell configurations. The specimens were crushed under three distinct energy inputs, and the deforming process and relevant mechanical parameters, e.g., the Poisson's ratio, failure mode, plateau stress and energy absorption capacity were studied. The FE results can generally compare well with the experimental ones and facilitate clarifying the impact mechanisms of the experimental results. Improvements of the auxetic specimens in energy absorption were verified through comparison with that of the corresponding convex honeycomb. The results reveal that the specimen with an auxetic honeycomb has higher plateau stress and specific energy absorption with less deformation when the geometric size is the same. A small side length-to-thickness ratio and input impact energy can lead to greatly improved energy absorption efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.