Abstract
We used polarization-resolved Raman scattering to study the magneto-elastic coupling in the parent compounds of several families of Fe-based superconductors (BaFe2As2, EuFe2As2, NaFeAs, LiFeAs, FeSe and LaFeAsO). We observe an emergent Ag-symmetry As phonon mode in the XY scattering geometry whose intensity is significantly enhanced below the magneto-structural transition only for compounds showing magnetic ordering. We conclude that the small lattice anisotropy is insufficient to induce the in-plane electronic polarizability anisotropy necessary for the observed phonon intensity enhancement, and interpret this enhancement below the Neel temperature in terms of the anisotropy of the magnetic moment and magneto-elastic coupling. We evidence a Fano line- shape in the XY scattering geometry resulting from a strong coupling between the Ag (As) phonon mode and the B2g symmetry-like electronic continuum. Strong electron-phonon coupling may be relevant to superconductivity.
Highlights
The lattice, orbital, and magnetic degrees of freedom are strongly coupled in the Fe-based superconductors
We study the in-plane electronic anisotropy in the parent compounds of several families of Fe-based superconductors (BaFe2As2, EuFe2As2, NaFeAs, LiFeAs, FeSe, and LaFeAsO) by polarization-resolved Raman scattering
We relate this As phonon intensity enhancement below the Néel temperature in iron pnictides to in-plane electronic anisotropy induced by the collinear spin-density wave order
Summary
The lattice, orbital, and magnetic degrees of freedom are strongly coupled in the Fe-based superconductors. In-plane electronic anisotropy resulted from ordered magnetic moment in iron-based superconductors
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.