Abstract

The effect of an in-plane induced uniaxial anisotropy on the magnetic vortex gyrotropic frequency is investigated by micromagnetic simulations, exemplified by the inverse magnetostriction in a uniaxially stressed circular dot. It is found that the gyrotropic frequency decreases with increasing magnitude of the induced uniaxial anisotropy. The results are analyzed by extracting the restoring forces from the vortex dynamical potential-well. The dominant contribution to the decreasing trend in frequency is found to be due to a softening of both the restoring force spring constants. This work offers an alternative method to control the gyrotropic frequency of a magnetic vortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.