Abstract

Abstract An in-pipe robot with active pipe-diameter adaptability and automatic tractive force adjusting is developed for long-distance inspection of main gas pipelines with different diameter series. Its physical design employs the scheme that three sets of parallelogram wheeled leg mechanism are circumferentially spaced out 120° apart symmetrically. This structural design makes it possible to realize the adaptation to pipe diameter and tractive force adjusting together. On the basis of analyzing the mechanical actions of the adaptation to pipe diameter and tractive force adjusting, the related mechanical models are established, and their control system structure and control strategy are discussed. To verify the pipe-diameter adaptability and tractive force adjusting of the robot, related field experiments are implemented in actual underground gas pipeline. The experimental results show that the theoretical analysis in this paper is valid and the prototype of this robot can work well in actual underground gas pipelines. Compared with other similar robots, this robot, which employs active mode for its adaptability to pipe diameter, can be adaptable to the wide range of gas pipeline diameters from ∅400 mm to ∅650 mm and automatically provide a stable and reliable tractive force with strong capacity of tractive force adjusting. As a mobile carrier for visual inspection and nondestructive testing to monitor block, corrosion, crack, defect, and wall thickness of main gas pipelines, its inspection range of one-time job in pipelines is extended beyond 1000 m.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.