Abstract

Long-term time series forecasting (LTSF) provides substantial benefits for numerous real-world applications, whereas places essential demands on the model capacity to capture long-range dependencies. Recent Transformer-based models have significantly improved LTSF performance. It is worth noting that Transformer with the self-attention mechanism was originally proposed to model language sequences whose tokens (i.e., words) are discrete and highly semantic. However, unlike language sequences, most time series are sequential and continuous numeric points. Time steps with temporal redundancy are weakly semantic, and only leveraging time-domain tokens is hard to depict the overall properties of time series (e.g., the overall trend and periodic variations). To address these problems, we propose a novel Transformer-based forecasting model named InParformer with an Interactive Parallel Attention (InPar Attention) mechanism. The InPar Attention is proposed to learn long-range dependencies comprehensively in both frequency and time domains. To improve its learning capacity and efficiency, we further design several mechanisms, including query selection, key-value pair compression, and recombination. Moreover, InParformer is constructed with evolutionary seasonal-trend decomposition modules to enhance intricate temporal pattern extraction. Extensive experiments on six real-world benchmarks show that InParformer outperforms the state-of-the-art forecasting Transformers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call