Abstract

Filling dead pixels or removing uninteresting objects is often desired in the applications of remotely sensed images. In this paper, an effective image inpainting technology is presented to solve this task, based on multichannel nonlocal total variation. The proposed approach takes advantage of a nonlocal method, which has a superior performance in dealing with textured images and reconstructing large-scale areas. Furthermore, it makes use of the multichannel data of remotely sensed images to achieve spectral coherence for the reconstruction result. To optimize the proposed variation model, a Bregmanized-operator-splitting algorithm is employed. The proposed inpainting algorithm was tested on simulated and real images. The experimental results verify the efficacy of this algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.