Abstract

In this study, an InP-cored quantum dot (InP-QD) material was prepared and physically immobilized on TiO2 particles functionalized with an archetypical reduction catalyst, (4,4-Y2-bpy)ReI(CO)3Cl (ReP, Y = CH2PO(OH)2), to form a new type of InP quantum dot-sensitized hybrid photocatalyst (InP-QD/TiO2/ReP) and evaluated as a lower-energy photosensitizer in this hybrid system. It was found that the TiO2 heterogenization of the InP-QD material promotes the photoexcited electron transfer process from the photoexcited InP-QD* to the inorganic TiO2 solid with rapid electron injection (by ∼25 ps) through oxidative quenching, resulting in efficient charge separation at the InP-QD/TiO2 interface. With such an effective photosensitization, the stabilization of the structurally vulnerable InP-cored QDs by TiO2 heterogenization resulted in highly efficient and durable photochemical CO2-to-CO conversion of the InP-QD/TiO2/ReP hybrid in a 10 times-repeated photolysis, giving a turnover number of ∼51,000 over a 420 h period without any damage to the InP-QD photosensitizer. The stability of TiO2-bound InP-QDs was confirmed by the comparative analysis of their photophysical and chemical structures before and after long-term photoreaction. This catalytic performance is the highest reported for QD-sensitized photocatalytic CO2 conversion systems using sacrificial organic electron donors. This study provides useful design guidelines for photocatalysts using QD materials as photosensitizing components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.