Abstract
Inositolphosphorylceramide synthase (IPCS) catalyses ceramides and phosphatidylinositol (PI) into inositolphosphorylceramide (IPC), which is involved in the regulation of plant growth and development. A total of three OsIPCS family genes have been identified in rice. However, most of their functions remain unknown. Here, the functions of OsIPCSs were analyzed by CRISPR/Cas9 technology, lipidomics analysis, and transcriptomics analysis. Single-gene mutation of OsIPCSs resulted in dwarf phenotype. Among them, the phenotype of osipcs3 mutant was more severe. Multi-gene mutation of OsIPCS genes led to more severe phenotypes, indicating the additive effects of OsIPCSs. We further determined that a significant decrease in epidermal cell elongation of internode in the mutants. There was a significant decrease in the content of IPC detected in the osipcs2/3 and osipcs1/2/3 mutants. The contents of glycosyl inositol phosphoryl ceramide (GIPC) were also decreased by 20% and 10% in osipcs2/3 and osipcs1/2/3, respectively. The results of RNA-seq showed that numerous DEGs found to be associated with cellular component organization, anatomical structure morphogenesis, and cell growth in the osipcs2, osipcs2/3, and osipcs1/2/3. Taken together, OsIPCSs may be involved in the regulation of plant height through affecting cell growth and sphingolipid metabolism in rice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.