Abstract

The inositol trisphosphate receptor (IP3R) is an intracellular calcium channel that mediates the cellular actions of a wide variety of hormones, growth factors, and cytokines. In osteoblastic cell cultures, many bone resorbing hormones increase phosphoinositide turnover, inositol trisphosphate production, mobilization of intracellular calcium, and the secretion of osteoclast recruitment and activating factors. In this study, the effects of 17 beta-estradiol, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), phrobol ester, and serum on IP3R mRNA levels were evaluated in osteogenic-osteosarcoma cells and in primary osteoblastic cultures derived from neonatal rat calvaria. Type-specific reverse transcription polymerase chain reaction (RT-PCR) indicated that all cell types evaluated (G-292, U-2 OS, Saos-2, MC3T3-E1, UMR-106, and calvarial osteoblastic cells) express IP3R mRNA type I; G-292, U-2 OS, MC3T3-E1, and calvarial osteoblastic cells also express type II IP3R mRNA; and UMR-106 and the calvarial osteoblastic cells express type III IP3R mRNA. Northern blot and RT-PCR analyses of human G-292 osteosarcoma cells and rat calvarial osteoblastic cells showed that phorbol ester and serum increase IP3R mRNA levels, whereas 17 beta-estradiol and 1,25(OH)2D3 decrease these levels. In G-292 cells, the effect of 17 beta-estradiol was not due to accelerated IP3R mRNA degradation and required continued protein synthesis. The results show that multiple IP3R types are expressed in osteoblasts and osteoblastic osteosarcoma cells and that this expression is regulated by 17 beta-estradiol and other osteoporotic and antiosteoporotic hormones. These findings indicate that hormonal control of IP3R expression may be relevant in the chronic regulation of osteoblast secretory activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.