Abstract

Measurements have been made, in adult male diabetic patients and control subjects, of the urinary content of inositol phosphoglycans (IPGs), the IPG A-type and IPG P-type forms, which, among other actions, regulate pathways of glucose utilization, lipogenesis, triglyceride formation, and pyruvate dehydrogenase (PDH) activity. Urine samples from the entire diabetic group showed a 2- to 3-fold increase in IPG A-type, and a fall in the IPG P-type:IPG A-type ratio relative to the control group. Subdivision of the diabetic patients into lean IDDM and obese NIDDM groups revealed significant differences in the IPG P-type:IPG A-type ratio between these groups, this ratio decreasing with increases in the body mass index (BMI). Analysis of the relationships among IPGs and HbA1, blood pressure, and BMI indicated that a fall in the IPG P-type:IPG A-type ratio correlated with a rise in the HbA1 (indicative of impaired glycemic control), with increased systolic blood pressure and increased obesity, all factors linked to Syndrome X. There was a parallism between the profile of the IPG P-type:IPG A-type ratio and the well-established pattern of insulin resistance and BMI. In vitro studies of the effects of alterations in the IPG P-type:IPG A-type ratio on the activation of the pyruvate dehydrogenase complex (PDH complex) at the PDH phosphatase reaction demonstrated that IPG A-type forms antagonized the stimulation of the PDH phosphatase by IPG P-type forms, thus having a negative effect on the conversion of PDH to the active, dephosphorylated, form. This observation could provide a mechanism whereby the shifts in the IPG P-type:IPG A-type ratio reported above could change the metabolic pattern from one directed to glucose oxidation to one more directed toward energy conservation and lipid storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call