Abstract

Gag polymerization with viral RNA at the plasma membrane initiates HIV-1 assembly. Assembly processes are inefficient in vitro but are stimulated by inositol (1,3,4,5,6) pentakisphosphate (IP5) and inositol hexakisphosphate (IP6) metabolites. Previous studies have shown that depletion of these inositol phosphate species from HEK293T cells reduced HIV-1 particle production but did not alter the infectivity of the resulting progeny virions. Moreover, HIV-1 substitutions bearing Gag/CA mutations ablating IP6 binding are noninfectious with destabilized viral cores. In this study, we analyzed the effects of cellular depletion of IP5 and IP6 on HIV-1 replication in T cells in which we disrupted the genes encoding the kinases required for IP6 generation, IP5 2-kinase (IPPK) and Inositol Polyphosphate Multikinase (IPMK). Knockout (KO) of IPPK from CEM and MT-4 cells depleted cellular IP6 in both T cell lines, and IPMK disruption reduced the levels of both IP5 and IP6. In the KO lines, HIV-1 spread was delayed relative to parental wild-type (WT) cells and was rescued by complementation. Virus release was decreased in all IPPK or IPMK KO lines relative to WT cells. Infected IPMK KO cells exhibited elevated levels of intracellular Gag protein, indicative of impaired particle assembly. IPMK KO compromised virus production to a greater extent than IPPK KO suggesting that IP5 promotes HIV-1 particle assembly in IPPK KO cells. HIV-1 particles released from infected IPPK or IPMK KO cells were less infectious than those from WT cells. These viruses exhibited partially cleaved Gag proteins, decreased virion-associated p24, and higher frequencies of aberrant particles, indicative of a maturation defect. Our data demonstrate that IP6 enhances the quantity and quality of virions produced from T cells, thereby preventing defects in HIV-1 replication.

Highlights

  • The generation of infectious HIV-1 particles is a complex process that requires assembly of multiple viral proteins, budding from the cellular membrane, and proteolytic maturation

  • The discovery that the host cell metabolite inositol hexakisphosphate (IP6) stimulates both immature and mature HIV-1 particle assembly began to uncover the mechanism by which HIV-1 particles become infectious

  • HIV-1 was less able to propagate in the cells due to defects in intracellular HIV-1 assembly and defects in progeny virion maturation

Read more

Summary

Introduction

The generation of infectious HIV-1 particles is a complex process that requires assembly of multiple viral proteins, budding from the cellular membrane, and proteolytic maturation. Particle assembly requires multiple Gag mediated interactions, including those of the NC domain with viral genomic RNA [2], the MA domain with the plasma membrane [3], and several inter-Gag interactions [4,5,6]. Substitutions in Gag affecting inter-Gag interactions can lower overall infectivity, decrease virion-associated p24, reduce virus release efficiency, disrupt viral maturation, and increase the proportion of immature virus particles [4,6,8,9,10]. Proper Gag assembly is critical to form infectious HIV-1 virions

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call