Abstract
Activation of certain phosphoinositidase C-linked cell surface receptors is known to cause an acceleration of the proteolysis of inositol 1,4,5-trisphosphate (InsP3) receptors and, thus, lead to InsP3 receptor down-regulation. To gain insight into this process, we examined whether or not InsP3 receptor degradation is a direct consequence of InsP3 binding by analyzing the down-regulation of exogenous wild-type and binding-defective mutant InsP3 receptors expressed in SH-SY5Y human neuroblastoma cells. Stimulation of these cells with carbachol showed that wild-type exogenous receptors could be down-regulated but that the binding-defective mutant exogenous receptors were not. Thus, InsP3 binding appears to mediate down-regulation. To validate this conclusion, a comprehensive analysis of the effects of the exogenous receptors was undertaken. This showed that exogenous receptors (i) are localized appropriately within the cell, (ii) enhance InsP3-induced Ca2+ release in permeabilized cells, presumably by increasing the number of InsP3-sensitive Ca2+ channels, (iii) have minimal effects on Ca2+ mobilization and InsP3 formation in intact cells, (iv) form heteromers with endogenous receptors, and (v) do not alter the down-regulation of endogenous receptors. In total, these data show that the introduction of exogenous receptors into SH-SY5Y cells does not compromise intracellular signaling or the down-regulatory process. We can thus conclude that InsP3 binding directly activates InsP3 receptor degradation. Because InsP3 binding induces a conformational change in the InsP3 receptor, these data suggest that this change provides the signal for accelerated proteolysis.
Highlights
Activation of certain phosphoinositidase C-linked cell surface receptors is known to cause an acceleration of the proteolysis of inositol 1,4,5-trisphosphate (InsP3) receptors and, lead to InsP3 receptor down-regulation
To gain insight into this process, we examined whether or not InsP3 receptor degradation is a direct consequence of InsP3 binding by analyzing the downregulation of exogenous wild-type and binding-defective mutant InsP3 receptors expressed in SH-SY5Y human neuroblastoma cells
InsP3 Binding and InsP3 Receptor Down-regulation derived from HA, yielding InsP3RHA and ⌬InsP3RHA, respectively
Summary
Activation of certain phosphoinositidase C-linked cell surface receptors is known to cause an acceleration of the proteolysis of inositol 1,4,5-trisphosphate (InsP3) receptors and, lead to InsP3 receptor down-regulation. The extent of InsP3 receptor overexpression was 2– 4-fold as determined by comparing the signals from serially declining amounts of SInsP3R, SInsP3RHA, and S⌬InsP3RHA membranes with that of membranes prepared from Svec.2 In agreement with previous cDNA transfection studies on other cell types [5, 33, 34], the exogenous receptor in SInsP3R (Fig. 2A, lane 3) exhibited a slightly slower migration rate than endogenous type I InsP3 receptor (lanes 1 and 2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.