Abstract

The uptake and release properties of Ca2+ by several subcellular fractions of the bovine adrenal medulla were investigated. Investigation by the 45Ca2+ tracer method showed that permeabilized cells and the fractions of mitochondria (MT) and microsomes (MC) caused ATP-dependent Ca2+ uptake in a Ca2+ concentration-dependent manner (pCa 8 – 4), whereas permeabilized cells and the fractions of secretory granules (SG) were able to accumulate a significant amount of Ca2+ even in the absence of ATP, which was completed by the addition of hexokinase and glucose. In these organelle fractions, Ca2+ uptake in the presence of ATP at pCa 7 and pCa 5.8 was well-correlated with the activity of the NADPH cytochrome c reductase (marker enzyme for the endoplasmic reticulum) and cytochrome c oxidase (marker enzyme for mitochondria), respectively. As detected by Fura-2 ratiometry, both inositol 1,4,5-trisphosphate (IP3) and caffeine caused concentration-dependent Ca2+ releases from permeabilized cells and MC, but not from MT and SG. In an ATP-depleted condition, homogenates still took up a significant amount of Ca2+ but was not able to respond to IP3 and caffeine. These results suggest that the endoplasmic reticulum is a major Ca2+-storing organelle, which releases Ca2+ in response to IP3 and caffeine in bovine adrenal chromaffin cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.