Abstract

We explored mechanisms involved in the age-dependent degeneration of human substantia nigra (SN) dopamine (DA) neurons. Owing to its important metabolic functions in post-mitotic neurons, we investigated the developmental and age-associated changes in the purine biosynthetic enzyme inosine monophosphate dehydrogenase (IMPDH). Tissue microarrays prepared from post-mortem samples of SN from 85 neurologically intact participants humans spanning the age spectrum were immunostained for IMPDH combined with other proteins. SN DA neurons contained two types of IMPDH structures: cytoplasmic IMPDH filaments and intranuclear IMPDH inclusions. The former were not age-restricted and may represent functional units involved in sustaining purine nucleotide supply in these highly metabolically active cells. The latter showed age-associated changes, including crystallization, features reminiscent of pathological inclusion bodies, and spatial associations with Marinesco bodies; structures previously associated with SN neuron dysfunction and death. We postulate dichotomous roles for these two subcellularly distinct IMPDH structures and propose a nucleus-based model for a novel mechanism of SN senescence that is independent of previously known neurodegeneration-associated proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.