Abstract

Nonlinear optical (NLO) switch materials that turn on/off second-harmonic generation (SHG) at a phase transition temperature (Tc ) are promising for applications in the fields of photoswitching and optical computing. However, precise control of Tc remains challenging, mainly because a linearly tunable Tc has not been reported to date. Herein, we report a unique selenate, tetragonal P 21 c [Ag(NH3 )2 ]2 SeO4 with a=b=8.5569(2) Å and c=6.5208(2) Å that exhibits a strong SHG intensity (1.3×KDP) and a large birefringence (Δnobv. =0.08). This compound forms a series of isostructural solid-solution crystals [Ag(NH3 )2 ]2 Sx Se1-x O4 (x=0-1.00) that exhibit excellent NLO switching performance and an unprecedented linearly tunable spanning 430 to 356 K. The breaking of localized hydrogen bonds between SeO4 2- and the cation triggers a phase transition accompanied by hydrogen bond length changes with increasing x and a linear change in the enthalpy .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.