Abstract

The low melt strength greatly limits the application of PLA as biodegradable package materials produced by film blowing method. Modified silica nanoparticles are introduced into PLA matrix to solve this problem in this study. To build Poly (l-lactide) nanocomposites successfully, two kinds of convenient and efficient methods are conducted to synthesize well-defined topological PLLA grafted SiO2 nanoparticle. One is the ring-opening of l-lactide (Grafting from), and another is nucleophilic addition reaction (Grafting to). The structure, molecular weight of grafted PLLA chains, grafting density, and the thermal decomposition behavior of the nanoparticles prepared by different methods are characterized. By varying the contents of the initiator SiO2 and the molecular weight of the reacted PLA chains, high density-low molecular weight PLLA grafted SiO2 are obtained in “grafting from” while high molecular weight-low grafting density PLLA grafted SiO2 are synthesized in “grafting to”. It is exactly in good agreement with the theoretic model. The spatial distribution of nanoparticles as well as the interaction force between nanoparticles and matrix is critical important to structuring bionanocomposites with desirable properties. So the two kinds of synthesized nanoparticles are introduced into PLA matrix in our contribution to evaluate these two factors, respectively. The TEM and SEM results both reveal the uniform dispersion of nanoparticles after modified. While the extension and shear rheology results show that the long grafted chains covalently connected on the surface of the silica via “grafting to” contribute more to enhance the melt strength of PLA. Meanwhile, stabilized PLA nanocomposites films with modified silica via “grafting to” method are successfully blown base on these researches. The research in this work constitutes a robust way to design melt-strengthen PLA/SiO2 nanocomposites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.