Abstract

Once thought of as a biosynthetic waste product, over the last 2 decades PPi has become understood as an entity with a variety of biologic roles (see Table 1). Documented roles include participation in intracellular Ca++ traffic, mediation of nucleotide and iron transport, storage of molecules in cellular granules, modification of enzyme function, and modulation of mineralization. Much has been established regarding plasma, urine, and synovial fluid levels (see Fig. 1) and urinary excretion in health and disease. Derangements in intracellular PPi content of skin fibroblasts have been noted in patients with CPPD deposition arthropathy (see Table 2). Mechanisms by which elevated PPi concentration develops in synovial fluid from joints with CPPD deposition and related arthropathies have come under scrutiny. The chondrocyte is now recognized as the probable cellular source of intra-articular extracellular PPi (see Figs. 3 and 4). Special attention has been focused on two basic pathways by which chondrocytes could generate extracellular PPi (see Fig. 2). In the first mechanism, chondrocytes demonstrate a set of ectoenzymes which could work in concert to directly produce extracellular PPi. The second pathway involves the major reactions by which PPi is formed within the cell and how intracellular PPi thus formed could be transported into the extracellular space. Much future research is needed regarding these two pathways and their relative importance in the pathogenesis of CPPD crystal deposition and related arthropathies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.