Abstract

Halobacterium salinarium grown in a liquid medium consumed up to 75% of phosphates originally present in the growth medium and accumulated up to 100 mumol Pi/g wet biomass by the time it entered the growth retardation phase. The content of acid-soluble oligophosphates in the biomass was maximum at the early stage of active growth and drastically decreased when cells reached the growth-retardation phase. The total content of alkali-soluble and acid-insoluble polyphosphates changed very little throughout the cultivation period (five days). The polyphosphate content of H. salinarium cells was close to that of yeasts and eubacteria. The pyrophosphatase, polyphosphatase, and nonspecific phosphatase activities of H. salinarium cells were several times lower than those of the majority of eubacteria. The specific activity of pyrophosphatase, the most active hydrolase of H. salinarium, gradually increased during cultivation, reaching 540 mU/mg protein by the end of the cultivation period. Half of the total pyrophosphatase activity of this halobacterium was localized in the cytosol. The molecular weight of pyrophosphatase, evaluated by gel filtration, was 86 kDa. The effective Km of this enzyme with respect to pyrophosphate was 115 microM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call