Abstract

Inorganic polyphosphate is a biological macromolecule consisting of multiple phosphates linked by high-energy bonds. Polyphosphate occurs in cells from all domains of life, and is known to play roles in a diverse collection of cellular functions. Here we examine the relationship between polyphosphate and protein synthesis in Escherichia coli. We report that polyphosphate associates with E. coli ribosomes in vitro. Characterization of this interaction reveals that both long-chain and short-chain polyphosphates interact with the ribosome. Intact 70S ribosomes, as well as 50S and 30S subunits, display a specific interaction with polyphosphate that is mediated primarily by contacts with ribosomal proteins. Additionally, we examined functional consequences of a ppk mutation, which severely reduces levels of intracellular polyphosphate. Extracts from ppk mutants contain lower levels of polysomes than wild-type cells, suggesting a defect in mRNA utilization or the mRNA-ribosome interaction. Ribosomes from wild-type and ppk mutant cells were isolated, and their activities were compared using a polyU RNA in vitro translation assay. While rates of polyphenylalanine synthesis are similar, use of ribosomes from ppk cells results in a misincorporation rate about five times higher compared with the rate observed when ribosomes from wild-type cells are used. Mistranslation rates in vivo were measured directly, and ppk mutants displayed higher readthrough frequencies for two different stop codons. Taken together, these results indicate that polyphosphate plays an important role in maintaining optimal translation efficiency in vivo and in vitro.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.