Abstract

Polyphosphates (PolyP) are linear polymers of orthophosphate residues that have been proposed to participate in metal resistance in bacteria and archaea. In addition of having a CopA/CopB copper efflux system, the thermoacidophilic archaeon Metallosphaera sedula contains electron-dense PolyP-like granules and a putative exopolyphosphatase (PPXMsed, Msed_0891) and four presumed pho84-like phosphate transporters (Msed_0846, Msed_0866, Msed_1094, and Msed_1512) encoded in its genome. In the present report, the existence of a possible PolyP-based copper-resistance mechanism in M. sedula DSM 5348T was evaluated. M. sedula DSM 5348T accumulated high levels of phosphorous in the form of granules, and its growth was affected in the presence of 16 mM copper. PolyP levels were highly reduced after the archaeon was subjected to an 8 mM CuSO4 shift. PPXMsed was purified, and the enzyme was found to hydrolyze PolyP in vitro. Essential residues for catalysis of PPXMsed were E111 and E113 as shown by a site-directed mutagenesis of the implied residues. Furthermore, M. sedula ppx, pho84-like, and copTMA genes were upregulated upon copper exposure, as determined by qRT-PCR analysis. The results obtained support the existence of a PolyP-dependent copper-resistance system that may be of great importance in the adaptation of this thermoacidophilic archaeon to its harsh environment.

Highlights

  • Acid mine drainage (AMD) and acid rock drainage (ARD) are the major environmental problems caused by biomining

  • PolyP has been associated with copper resistance in A. ferrooxidans [10] and S. metallicus

  • M. sedula DSM 5348T could have a PolyP-based copper-resistance mechanism as that one proposed for S. metallicus and A. ferrooxidans [10, 11]

Read more

Summary

Introduction

Acid mine drainage (AMD) and acid rock drainage (ARD) are the major environmental problems caused by biomining. Consortiums of thermophilic bacteria have been proposed as possible candidates for bioremediation of metal-contaminated sites due to their capacity to adsorb metals [3] Thermoacidophilic archaea, such as Sulfolobus metallicus and Acidianus brierleyi, are important microorganisms used in bioleaching and can live in the hostile environmental conditions present in AMD. These archaea are iron and sulfur oxidizers, living in acidic and high-temperature environments (>60°C), and are generally very resistant to high metal concentrations [4]. These unique characteristics make thermoacidophiles possible efficient candidates for bioremediation of AMD, so far no strategies have been proposed using these microorganisms. A better understanding of how thermoacidophilic archaea can survive in AMD-conditions is still needed [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call