Abstract

Ammonia (NH3) is attracting attention as a carbon-free energy source and a significant precursor to inorganic PM2.5 (hereafter PM2.5), aside from NOx and SOx. Since the emission of NH3 has often been overlooked compared to NOx and SOx, this study aims to reveal the role of NH3 and its emission control on PM2.5 in Kanto, Japan. With the aid of gas ratio (GR) quantitatively defining the stoichiometry between the three precursors to PM2.5, and the aid of atmospheric modeling software ADMER-PRO, coupled with thermodynamics calculations, the spatiotemporal distribution along with PM2.5 reduction under different NH3 emission cutoff strategies in Kanto had been revealed for the first time. The cutoff of NH3 emission could effectively reduce the PM2.5 concentration, with sources originated from agriculture, human/pet activities, and vehicle sources, overall giving a 93.32% PM2.5 reduction. Different cutoff strategies lead to distinct reduction efficiencies of the overall and local PM2.5 concentrations, with GR as a crucial factor. The regions with GR ∼1, are sensitive to the NH3 concentration for forming PM2.5, at which the NH3 reduction strategies should be applied with high priority. On the other hand, installing a new NH3 emission source should be avoided in the region with GR < 1, suppressing the so-yielded PM2.5 pollution. The future PM2.5 pollution control related to the NH3 emission control strategies based on GR, which is stoichiometry-based and applicable to regions other than Kanto, has been discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.